Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Biofuels, Bioproducts and Biorefining ; 17(1):71-96, 2023.
Article in English | Scopus | ID: covidwho-2244630

ABSTRACT

In recent years, the production and consumption of fossil jet fuel have increased as a consequence of a rise in the number of passengers and goods transported by air. Despite the low demand caused by the coronavirus 2019 pandemic, an increase in the services offered by the sector is expected again. In an economic context still dependent on scarce oil, this represents a problem. There is also a problem arising from the fuel's environmental impact throughout its life cycle. Given this, a promising solution is the use of biojet fuel as renewable aviation fuel. In a circular economy framework, the use of lignocellulosic biomass in the form of sugar-rich crop residues allows the production of alcohols necessary to obtain biojet fuel. The tools provided by process intensification also make it possible to design a sustainable process with low environmental impact and capable of achieving energy savings. The goal of this work was to design an intensified process to produce biojet fuel from Mexican lignocellulosic biomass, with alcohols as intermediates. The process was modeled following a sequence of pretreatment/hydrolysis/fermentation/purification for the biomass-ethanol process, and dehydration/oligomerization/hydrogenation/distillation for ethanol-biojet process under the concept of distributed configuration. To obtain a cleaner, greener, and cheaper process, the purification zone of ethanol was intensified by employing a vapor side stream distillation column and a dividing wall column. Once designed, the entire process was optimized by employing the stochastic method of differential evolution with a tabu list to minimize the total annual cost and with the Eco-indicator-99 to evaluate the sustainability of the process. The results show that savings of 5.56% and a reduction of 1.72% in Eco-indicator-99 were achieved with a vapor side stream column in comparison with conventional distillation. On the other hand, with a dividing wall column, savings of 5.02% and reductions of 2.92% in Eco-indicator-99 were achieved. This process is capable of meeting a demand greater than 266 million liters of biojet fuel per year. However, the calculated sale price indicates that this biojet fuel still does not compete with conventional jet fuel produced in Mexico. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.

2.
Biofuels Bioproducts & Biorefining-Biofpr ; 2022.
Article in English | Web of Science | ID: covidwho-2172676

ABSTRACT

Nowadays, lignin is a byproduct of the agricultural and cellulose pulp mill. Lignin is a sustainable, renewable raw material alternative to petroleum-based chemicals, mainly for the benzene-toluene-xylene (BTX) production of commodities and the sequential secondary, tertiary and manufactured products in the petrochemical industry. It can be mass produced and is used for renewable energy biorefinery or high-value-added products. This review aims to outline the important lignin depolymerization technologies and the feasibility of imposing these transforming technologies on a large scale. Finally, this review examines the market prospects for BTX, revealing its R&D progress. However, the harmful effects of BTX and unfavorable conditions resulting from the COVID-19 pandemic comprise roadblocks to its growth. However, the increasing use of biobased BTX is expected to open new market opportunities. (c) 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.

3.
Biofuels, Bioproducts and Biorefining ; 2022.
Article in English | Scopus | ID: covidwho-2157708

ABSTRACT

In recent years, the production and consumption of fossil jet fuel have increased as a consequence of a rise in the number of passengers and goods transported by air. Despite the low demand caused by the coronavirus 2019 pandemic, an increase in the services offered by the sector is expected again. In an economic context still dependent on scarce oil, this represents a problem. There is also a problem arising from the fuel's environmental impact throughout its life cycle. Given this, a promising solution is the use of biojet fuel as renewable aviation fuel. In a circular economy framework, the use of lignocellulosic biomass in the form of sugar-rich crop residues allows the production of alcohols necessary to obtain biojet fuel. The tools provided by process intensification also make it possible to design a sustainable process with low environmental impact and capable of achieving energy savings. The goal of this work was to design an intensified process to produce biojet fuel from Mexican lignocellulosic biomass, with alcohols as intermediates. The process was modeled following a sequence of pretreatment/hydrolysis/fermentation/purification for the biomass-ethanol process, and dehydration/oligomerization/hydrogenation/distillation for ethanol-biojet process under the concept of distributed configuration. To obtain a cleaner, greener, and cheaper process, the purification zone of ethanol was intensified by employing a vapor side stream distillation column and a dividing wall column. Once designed, the entire process was optimized by employing the stochastic method of differential evolution with a tabu list to minimize the total annual cost and with the Eco-indicator-99 to evaluate the sustainability of the process. The results show that savings of 5.56% and a reduction of 1.72% in Eco-indicator-99 were achieved with a vapor side stream column in comparison with conventional distillation. On the other hand, with a dividing wall column, savings of 5.02% and reductions of 2.92% in Eco-indicator-99 were achieved. This process is capable of meeting a demand greater than 266 million liters of biojet fuel per year. However, the calculated sale price indicates that this biojet fuel still does not compete with conventional jet fuel produced in Mexico. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.

4.
Biomass Convers Biorefin ; : 1-18, 2021 May 27.
Article in English | MEDLINE | ID: covidwho-1250946

ABSTRACT

Emergence of "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)" causing "COVID-19" or "coronavirus disease 19" as pandemic has got worldwide attention towards hygiene as the first line of defense for the infection control. It is first line of defense not only from COVID-19 but also from other infectious diseases caused by deadly pathogens such as cholera, hepatitis, tuberculosis, polio, etc. Absence of any particular vaccine or treatment let World Health Organization (WHO) recommend to the public to maintain social distancing along with regularly washing their hands with soap, sanitize their hands (where washing is not possible), and disinfect their belongings and buildings to avoid the infection. Out of various formulations available in the market, WHO has recommended alcohol-based hand sanitizers, which mainly comprise of ethanol, isopropyl alcohols, and hydrogen peroxides in different combinations due to their high potential to kill the broad range of pathogens including bacterial, viral, fungal, helminthes, etc. Therefore, alcohol-based sanitizers are in high demand since centuries to prevent infection from pathogenic diseases. Ethanol is the most common and popular alcohol in terms of vanishing wide range of pathogens, convenient to use and its production. Ethanol is produced worldwide and is used in various sectors, e.g., beauty and cosmetics, food and beverages, and as the most demanding gasoline additive. The present review is focused on the ethanol production in India, its diversified applications emphasizing hand sanitizers with discussions on formulation of sanitizer and disinfectants, and viability of lignocellulosic and food grain-based ethanol. The review article also emphasizes on the technological details of 1G and 2G ethanol production, their associated challenges, and inputs for the improved ethanol yields so as to strengthen the supply chain of ethanol in India, and making "Atmanirbhar Bharat" (Self-reliant India) campaign of Indian government successfully viable.

SELECTION OF CITATIONS
SEARCH DETAIL